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Abstract

-W* considerthe parallel time complexity of logic programs without function symbols,
called logical query programs. We give a PRAM algorithm for computing the minimum
model of a logical query program, and show that for programs with theUpolynomial,
fringe property,"'this algorithm runs in logarithmic time. As a result, the 'linear"
and "piecewise linear" classes of logic programs are in MIC. Then we examine several
nonlinear cases in which the program has a single recursive rule that is an elementary
chain." Among such 'elementary single rule programs that are nonlinear, some can
easily be shown to have an equivalent linear program, hence are in RC.W We-wk that
certain nonlinear programs are related to GSM mappings of a balanced parentheses
language, and that this relationship implies the'polynomial fringe property;L hence
such programs are in )/C. Finally, we describe an approach for demonstrating that
certain logical query programs are log space complete for P, and apply it to both
elementary single rule programs and nonelementary programs.

1 Introduction
We consider the parallel time complexity of logic programs without function symbols,

called logical query programs. Essentially, such programs add the power of a least fix-
point operator to relational algebra. With the development of efficient implementations
of Prolog and the possibility of massive parallel computation through advances in VLSI
techniques, there has been incrcased interest in the power of this extension. It is well
known that the least fix-point operator is a genuine extension to the expressive power of
the monotonic subset of relational algebra that excludes set difference [AU79], and that
queries expressible in this extended language (i.e., queries representable by function-free
Horn clause query programs) are computable in time that is polynomial in the size of the
database [CH82]. The parallel complexity of such programs was largely unknown [Var85].

*Supported by NSF grant IST-84-12791, a grant of IBM Corp., and ONR contract N00014-85-C-0731.
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Some of these logical query programs involve a thinly disguised transitive closure, which is
known to be in JIC. Prominent among these are programs employing linear recursion. A
program is said to have linear recursion when no rule has more than one recursive subgoal. "

The classification of programs employing "inherent" nonlinear recursion, i.e., those
that cannot be imitated by a program with linear recursion, has been an unresolved
question. We shed some light on the nonlinear recursion question in this paper. We present
new PRAM algorithms for, and define the "polynomial fringe property" for logical query
programs. In our first main result, the Polynomial Fringe Theorem, we show that logical
query programs with this property are in )C, hence permit very fast parallel computation,
given enough resources. Our second result, the GSM Mapping Theorem, is that certain
programs with "inherent" nonlinear recursion have the polynomial fringe property; hence
such programs are in RC.

The remainder of the paper is organized as follows: in Sections 2 and 3 we give basic
definitions and define the Basic Theorem Problem, by which we measure the complexity
of a logical query program. In Section 4 we review the semantics of Horn logic programs,
minimum models, and derivation trees. In Sections 5 and 6 we present new PRAM
algorithms and prove our first main result, the Polynomial Fringe Theorem. In Section 7
we mention some easy consequences of the Polynomial Fringe Theorem, some of which
were already known. In Section 8 we prove our second main result, the GSM Mapping
Theorem. In Section 9 we show that slight changes to programs that are in /C produce
programs that are log space complete for P. We conclude in Section 10. N,

2 Basic Definitions

2.1 Logic Programs

An atom is an atomic formula, i.e., a predicate symbol with terms as arguments, as
customarily defined in logic. A literal is a polarized atom, i.e. a positive or negative
atom. A clause is a disjunction of literals. A unit clause has exactly one literal. A definite
clause has exactly one positive literal. A negative clause has no positive literal; the empty
clause is considered negative. Strictly speaking, a Horn clause is either a definite clause
or a negative clause; however, the term is often used loosely as a synonym for "definite
clause" when no confusion is likely.

Definite clauses are also called rules, and we shall normally use this more descriptive -
term. The positive literal is then called the head of the rule, and the negative literals
are called its subgoals. A Horn logic program is a set of rules. An entity (atom, rule,
or logic program) is function free if its terms are only variables and constants, i.e., no
functors of positive arity appear. An entity is ground if its terms contain no variables.
For our purposes, a logical query program is a function-free Horn logic program; we often ,-.

abbreviate this to "logic program", or even "program," as that is the only kind we consider.
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Definition 2.1: A basic logic program is a finite set of definite rules containing two classes
of predicate symbols: % 0

[.i..

9 IDB (Intentional Database) predicates are those that appear in rule heads, and V..
possibly in subgoals also; PP1,P2,... denote IDB predicates.

• EDB (Extensional Database) predicates are those that appear only in subgoals;
q) 91, 2,... denote EDB predicates.• ...

An EDB fact is a positive unit clause over an EDB predicate, with constants as
arguments. The constants are drawn from some countable set. An EDB instance (or
EDB, for short) is a finite set of EDB facts.

An extended logic program is the union of a basic logic program and an EDB instance;
the predicates appearing in the EDB instance are a subset of the (syntactically defined)
EDB predicates in the basic logic program.

Borrowing from the terminology of context free languages, we define a terminal rule to
be one in which all subgoals are EDB predicates, and a nonterminal rule to be one with
at least one IDB subgoal.

We generally follow the Prolog convention that symbols beginning with an uppercase
letter are logic variables, while predicate symbols and constants begin with a lowercase
letter.

We shall assume for simplicity that the rules of the basic logic program contain no
constants, i.e., all predicate arguments in a rule are variables. Also, we assume that every
rule has at least one subgoal. (It is easy to meet these requirements by creating a limited
number of additional EDB predicates and requiring certain EDB facts to be present.)

2.2 Dependence Structure and Rank of Rules

The predicates of a basic logic program have a natural partition into strong components,
based on the following dependence graph. Let each IDB predicate symbol pi and each EDB.
predicate symbol q, be a node in the graph; put an arc from py (resp. q,) to pi if there is a
rule whose head is pi and which has a p- (resp. q,) subgoal. The strong component of an
IDB predicate consists of just the predicates in its strong component in the dependence
graph. Of course, each EDB predicate is a singleton strong component.

Definition 2.2: A (nonterminal) rule is called recursive if it has a subgoal in the same
strong component as the head. In a recursive rule, a recursive subgoal is a subgoal in the
same strong component as the head of the rule. Other subgoals are nonrecursive. Thus the
same atom may be a recursive subgoal in one rule and a nonrecursive subgoal in another.

3
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Associated with the dependence graph is the reduced dependence graph. Each node
in the reduced dependence graph corresponds to a strong component in the dependence

*graph. Put in an arc from strong component s, to s2 whenever some predicate in s, is a
subgoal for a rule whose head is in s.2 The reduced graph is acyclic, of course.

Definition 2.3: We define the rank of a predicate to be the height (length of longest path
to a leaf) of its strong component in the reduced dependence graph; the rank of a rule is L""

the rank of its head. The rank of each EDB predicate is 0. 0

We observe that in any rule the rank of a recursive subgoal equals the rank of the head

of the rule, while the rank of a nonrecursive subgoal is less than the rank of the head.

3 The Basic Theorem Problem

We shall consider the parallel time complexity of a certain decision problem involving
logic programs, which we call the basic theorem problem for logic programs. For the basic
theorem problem, a basic logic program P 1 is given and regarded as fixed. Assume its IDB
predicates are Pl,...,p, and its EDB predicates are q1 ,...,q,.. The rules contain only
variables, but the input language has a countable set of constants. Recall our convention
that a basic logic program contains no EDB facts; we use the subscript I as a reminder
of this convention. For definiteness here, we denote vectors of constants that occur as
arguments by d, b, a, etc. Later, we shall drop the overbar, and let context determine
whether a, b, etc. represent single constants or vectors of constants. The input to a
problem instance is a ground clause Q of the form

A Z):- .j .;i) (1) --N

and the question is, "Is Q a theorem of Pr?" In other words, the basic theorem problem
for Pr consists of recognizing the set of theorems of PI in the form of Eq. 1.

An alternative and equivalent formulation of a problem instance is to define P 5 to be
the set of EDB facts, {q.,,(ZI),. . . , (N) , from the right hand side of Eq. 1, and define
P = PI U PE; then ask the question, "Is p,(to) a theorem of P?" In both cases we define
the size of the input to be N, the number of EDB literals, or facts, in the input.

We wish to characterize basic logic programs according to whether their basic theorem

problem is in )/C, or is log space complete for P (P-complete for short). That the problem
is always in P can be seen from the Naive Evaluation algorithm described below (see
[CH82] for a complete proof). Loosely speaking, we say a basic logic program is in M4C, or
is P-complete, when we really mean that its basic theorem problem is. This problem has
been called the data complexity problem in ICH82,Var82).

Our computational model is a PRAM in which concurrent writes must be consistent
(the common write model). We are not concerned with representation issues, so make the

4



convenient assumption that constants in PE (i.e., the Herbrand universe of the extended
logic program) consist of a reasonably dense subset of some prefix of the natural numbers,
so that there is no problem in associating processors and global memory locations with a
vector of EDB constants. The treatment of Pr as fixed is important in our accounting.
In particular, there are integers a and b that represent the maximum arities of any IDB
predicate and any EDB predicate, respectively, but depend only on Pr and not on the
EDB, PE, of a particular problem instance. We are assured of having at most Nb different
constants in a PE of size N. Let v possibly depend on PI, but not on PE. The number
of v-tuples of EDB constants is then at most (Nb)", i.e., is polynomial in the size of the
input, and we can consider assigning a separate processor or memory location to each such
tuple. We assume that once the EDB is given, any processor can check whether a ground
atom is an EDB fact and can associate a memory address with a v-tuple of EDB constants • .-
in constant time.

4 Semantics of Logic Programs and Derivation Trees

Following [VEK76,AVE82], we define the Herbrand base U of an extended logic program
P to be the set of variable-free atoms containing no predicates or constants other than
those occurring in P. An interpretation is a subset of U.

With a logic program P we associate a function Tp from interpretations to interpreta-
tions. Let I be an interpretation. We define a ground atom a to be in Tp (I) if and only if
there exists in P a rule b0  bl,... , b. and there exists a substitution 0 such that:

* a is syntactically identical to boO, the instantiated head of the rule, and

* I contains every instantiated subgoal, b,... , bj8.

We define a lattice whose set is the powerset of the Herbrand base, and whose partial '-ft

order is set inclusion. If P is a definite logic program, then Tp is monotone with respect . -

to this order. By the Knaster-Tarski Fixpoint Theorem every monotone function has a
least fixpoint. It is well known [VEK76] that the least fixpoint of Tp is the minimum L
Herbrand model of P (i.e., is a subset of every Herbrand model of P). Moreover, in the
function-free case there is an integer K such that TK (O) equals the minimum model. Let
us call an interpretation a partial model if it is a subset of the minimum model. Then
Tp(0) is clearly a partial model for all natural numbers, k.

The EDB portion of the minimum model is simply the set of EDB facts (since by
definition EDB predicates never appear in the head of a rule), so we take for granted that
EDB facts are included in all partial models we compute. Consequently, when we talk
about representing or computing "the model," we mean the IDB portion of the minimum
Herbrand model.

- .* ,t '"* ." '



Definition 4.1: Given an extended logic program P, a derivation tree for a ground atom
p0 is a rooted tree with atoms as nodes and edges between parents and children, such that

' p0 is the root

* for every internal node r° whose children are r1,... , r", there is some ground rule
instance ,r ° :-r r I ... Ir

where r' are atoms with various predicate symbols.

* every node is in the minimum model of P; leaves are not necessarily in the EDB.

A nonterminal derivation tree is one in which each internal node has at least one
DB atom among its children; i.e., only nonterminal rules were used in the derivation. A

complete derivation tree is one in which all leaves are EDB facts.
By path in a derivation tree we mean a directed path away from the root. The fringe

of a tree is the set of its leaves. A tight derivation tree is one in which no node has an
ancestor identical to itself; i.e., no atom occurs twice on one path. 0

5 PRAM Algorithms for Logical Query Programs

We begin by describing fairly general parallel algorithms for computing the minimum
model of an extended logic program. Analysis of these algorithms leads to a sufficient
condition for a basic logic program to be in MC. (Clearly the basic theorem problem of
Pr is in /C if and only if computation of the minimum model of Pr U P, is in A/C: Since
the Herbrand base is of polynomial size, we can consider all candidates, pi (a), in parallel.)

Let N be the length of an input to the basic theorem problem. Recall that the
input consists of one IDB ground atom (the "top-level goal") and N EDB ground atoms
(EDB facts), and that the problem is to decide whether the EDB facts together with the
nonterminal rules imply the top-level goal. The number of constants in the input is O(N).

This problem is well-known to be in P in view of the algorithm Naive Evaluation, which

simply computes Tp (),... ,Tp(0) until a fixpoint is reached 1AU79,CH82). If parts (b)
and (c) are removed from our Basic Evaluation algorithm below, the result is a PRAM
implementation of Naive Evaluation. Each iteration can be done in constant time, but
it is easy to find / examples, such as "transitive closure," for which K = O(N) for
Naive Evaluation. Parts (b) and (c) provide the speed-up needed to bring a large class of
programs down to poly-log PRAM time.

Algorithm 5.1: (Basic Evaluation) The constants appearing in the EDB comprise the
Herbrand universe. "Instantiations" refer to instantiations of variables to these constants.
We shall build the minimum Herbrand model of the extended logic program by constructing
a directed graph in which the nodes are the IDB atoms in the Herbrand base, plus a node

6
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for true. We call this graph the implication graph of the extended logic program. We
regard an atom as being in the partial model (and call that atom true) whenever there is
an arc from true to that atom in the implication graph. Initially the implication graph
has no edges; the partial model is empty.

Initialization: For each terminal rule, evaluate all its instantiations in parallel; for
those proved by the EDB facts, put in an arc from true to the node corresponding to RM .
the instantiated head of the rule thereby adding it to the partial model. For each other
rule, consider all its instantiations in parallel; those such that all EDB subgoals are EDB
facts are "live," and are simplified by removing the EDB subgoals. Rule instances with an
EDB subgoal for which there is not a matching EDB fact can be discarded from further
consideration. If v is the maximum number of variables in any nonterminal rule, then NI.
O(N") processors can accomplish the foregoing in a constant number of steps.

Iteration: Perform a new iteration stage as long as any new IDB atom was derived
(i.e., a new arc from true to some node was added) in the previous stage.

Part (a) Begin by checking each live rule instance in parallel. Remove any of its
remaining (IDB) subgoals that are now "true," i.e., in the partial model. If it has no
subgoals left, put an arc from true to the head of the rule instance into the implication
graph.

Part (b) If a live rule instance has one subgoal left, suppose it has been reduced to
p1 :_ p2 . Put the arc p2 - p1 into the implication graph; i.e., put in an arc from the node
corresponding to the instantiated subgoal to the node corresponding to the instantiated
head of the rule.

Part (c) Now transitively close the current implication graph. If a is the maximum
number of arguments in any IDB predicate, the implication graph has O(N") nodes, so
the transitive closure can be done in poly-log time with "only" O(NsG) processors. Note

that any nodes that become reachable from true are now in the partial model. This
completes one stage of the iteration.

Termination: When nothing has been added to the partial model in an iteration stage,
halt. Lemma 5.1 shows that the minimum Herbrand model has been constructed. For the
basic theorem decision problem, the top-level goal atom is a theorem precisely if it is in
this model. E

Lemma 5.1: Algorithm 5.1 correctly computes the minimum Herbrand model of the
extended logic program.

Proof: The proof follows the proofs in [VEK76,AU79,CH82] that Tp(0) converges to the
least fixpoint, finitely in the function-free case. The only difference is that arcs in the
implication graph are used also. But arc a --+ b is easily seen to correspond to a theorem
(or lemma, if you will), "a implies b," and transitive closure (part (c)) amounts to reasoning
by modus ponen8. |

7



The PRAM time for an iteration stage of Algorithm 5.1 is easily seen to be constant for
parts (a) and (b), and poly-log for part (c). In order to show that a basic logic program
is in JC, it is sufficient to show that Algorithm 5.1 requires only poly-log stages when
applied to this program. Theorem 6.2 provides a general tool for this purpose. But first,
we present a modification of Basic Evaluation. _'

Algorithm 5.2: (Fast Evaluation) All parts of this algorithm are the same as Algo- ' ..

rithm 5.1 (Basic Evaluation) except part (c) of the iteration stage, which is replaced by:
Part (c) Now do one "transitive closure step" in the current implication graph. Specif-

ically, in parallel, if p' -+ p2 and p2 -_ p1 are already in the implication graph, then put in
arc p3 - p'. Again, if a is the maximum number of arguments in any IDB predicate, the
implication graph has O(N*) nodes, so this step can be done in constant time with "only"
O(N 3 ) processors. Note that any nodes that become reachable from true are now in the
partial model. "

A little thought reveals that Fast Evaluation computes the same implication graph as
Basic Evaluation, due to the monotonicity of both algorithms. Assuming Basic Evaluation
does 'transitive closure" by repeated application of part (c) of Fast Evaluation, it is further
evident that Fast Evaluation is at least as fast as Basic Evaluation. In fact, in the cases we
can analyze, both algorithms require O(log N) stages, but Basic Evaluation may require
O(log N) per stage, while Fast Evaluation requires only constant time per stage. Thus the 5
name "Fast Evaluation" is justified.

6 Polynomial Fringes and J-C
In this section we define a key property for basic logic programs, the polynomial fringe
property, and show that programs with this property run in poly-log time under the Basic
and Fast EvalIation algorithms presented in Section 5. Ruzzo has obtained interesting .
related results for alternating Turing machines with polynomial sized computation trees
[Ruz80I; however, his tree transformations appear to be based on a different principle
from ours, involving a centroid concept. Our methods are more analogous to a method
of parallel evaluation of tree expressions used, e.g., in [VSBR83], (MR85], and [AH85J.
What is somewhat novel in our use of tree transformations is that our algorithm does not

explicitly process (or preprocess) the tree; we only use the tree as a device to analyze the
algorithm.

Definition 6.1: A basic logic program has the polynomial fringe property (relative to a
class of EDB's D) if for every EDB (in class D) and every atom in the minimum model of
the resulting extended logic program, that atom has a derivation tree whose fringe is of
polynomial length in the size of the EDB. If the class P is not mentioned, it is taken to be 3m
all possible EDB's. .

8' '
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Next we quote a useful lemma, which allows us to restrict attention to tight derivation
trees, which have polynomial depth. Recall that a derivation tree is tight if no atom occurs
twice on one path from the root. Thus in tight derivation trees, a polynomial number of
nodes is equivalent to a polynomial fringe length.

Lemma 6.1: Every atom in the minimum model of a logical query program has a tight
derivation tree, whose depth is polynomial in the size of the EDB.

Proof: If a complete derivation tree for atom a is not tight, then there is another complete
derivation tree for a with fewer nodes and no more leaves, obtained as follows: Find the
node b' with identical ancestor b, and substitute the subtree rooted at Y in place of the b
subtree. It follows that the minimum complete derivation tree for a is tight. Since there
are only polynomially many instances of IDB literals in the Herbrand base, and no instance
appears twice on one path in a tight derivation, the lemma follows. I

The following theorem is a weak form of the Polynomial Fringe Theorem (Theorem 6.3),
but serves as an introduction to many of the ideas in a simpler form.

Theorem 6.2: A basic logic program with the polynomial fringe property is in MIC.

Proof: We show that for any IDB atom p0 in the minimum model of P, if p0 has a complete
derivation tree with fringe F, then Algorithm 5.1 requires at most log2 jFJ + 1 stages to
put p0 into the model it constructs, where IFI is the number of atoms in F.

In order to track the progress of the computation as it relates to p0, we define the
remaining derivation tree for p0 to be the original (complete) derivation tree with all nodes
that so far have been put into the partial model removed. Accordingly, at the beginning
of the first iteration stage, all EDB facts have been pruned from the remaining derivation

tree, and it contains only IDB atoms. At the beginning of any iteration stage, the fringe
consists of atoms that will be put into the partial model during this stage, as all the
required subgoal instances have been put in during preceding stages. Thus every atom
in the fringe at the beginning of the stage is pruned from the remaining derivation tree
during part (a) of that stage.

The key observation is that any atom that is in the fringe at the end of an iteration
stage had at least two descendant atoms that were in the fringe at the beginning of that
stage. For suppose some atom p1 has only one descendant p' in the fringe at the beginning
of the stage. Then it must have only one remaining subgoal (i.e., not yet in the partial
model). Moreover, every descendant of p1 other than p2 must have had only one remaining
subgoal. Then arcs existed in the implication graph that form a path from p2 to pl, at
the beginning of the stage. Since p2 was in the fringe, the arc from true to p2 was put in
during part (a), completing a path from true to p1 in the implication graph. Therefore,
during part (c) an arc from true to p' was put in the implication graph, making p1 part of
the partial model. Thus p1 with only one fringe descendant cannot be in the new fringe.

_-. ,. :. -. .2 .. . . .. . . . . . . . .. - . . .. • . .. . . - . . . .



Since every new fringe atom had two fringe descendants in the remaining derivation 1-

tree of the preceding stage, the size of the fringe halves during each iteration stage. Thus,
the root is put into the partial model within log2 iFI + 1 stages. Since each stage requires
poly-log time and uses a polynomial number of processors, the theorem follows. | .: .

Example 6.1: Suppose atom p1 has the remaining derivation tree shown in Fig. 1 after P.

the initialization stage of the Basic Evaluation algorithm, and assume it has no other
derivations. It is evident that Naive Evaluation requires four steps to derive pl. Let us

(PP

-41

I.4 5 "

P P

Figure 1: An unbalanced remaining derivation tree

track the progress of Basic Evaluation.

(0) Implication graph empty. Remaining derivation tree is as shown in Fig. 1, with four
fringe nodes.

(la) Implication graph gets arcs from true to p7, 9, p, and p6 .

(1b) Implication graph gets arc p6 -- p3 .

(1c) Transitive closure puts in arc from true to p'. Remaining derivation tree is reduced
to p, e, and p4 .

(2a) Implication graph gets arc from true to p4 .

(2b) Implication graph gets arcs p4 -. p2 and p2 
- p1 .

10
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(2c) Transitive closure puts in arcs from true to p2 and pl, as well as p" -_ p'. Remaining
derivation tree is now empty.

Thus Basic Evaluation derives p1 in two stages. Observe that stage (2c) requires two
"transitive closure steps." (Realistically, a third step is also needed to see that nothing

new is found.) Because Fast Evaluation does not do a full transitive closure in each stage,
it requires three stages. On problems of any nontrivial size, the reduced time per stage
more than makes up for the additional stages. 0

Programs with the polynomial fringe property run in log2 N PRAM time under Ba-
sic Evaluation. It is straightforward to simulate this computation with a log3 N depth
Boolean circuit of bounded fan-in gates. (It is easy to see that logk N PRAM time in our
algorithms translates to logk+I N depth for a bounded fan-in circuit, and to logk N depth
for polynomial fan-in.) The class )/C" essentially consists of problems that can be solved
by "uniform" circuits of depth O(logk N) using a polynomial number of bounded fan-in
gates; we omit the technical uniformity condition [Coo841. Since our class of problems
includes "transitive closure," log2 N depth is the best known bound and is likely optimal,
so it is of some interest to show that Fast Evaluation achieves this bound on programs
with the polynomial fringe property. Our proof uses the node-counting method of [MR85].

Theorem 6.3: (Polynomial Fringe Theorem) A basic logic program with the polynomial
fringe property is in ._ C2.

Proof: We show that for any IDB atom p0 in the minimum model of P, if p0 has a
nonterminal complete tight derivation tree T with ITI nodes, then Algorithm 5.2 (Fast
Evaluation) requires at most loge ITI stages to put p0 into the model it constructs. Since
the polynomial fringe property, together with Lemma 6.1, guarantee that ITI is polynomial
in N, the theorem follows.

In order to track the progress of the computation as it relates to p0 , we define an effective
derivation tree for p0 . As in Theorem 6.2, this tree is initially a complete derivation tree;
however the updating operation is more complicated. As before, all nodes that are put
into the partial model (as well as nodes corresponding to EDB facts) are removed. In
addition, all "chains" are shortened in accordance with arcs in the current implication

,. graph. Specifically, starting with the root of the current effective derivation tree and
working down, if there is a sequence of nodes pl,p 2 ,... ,p, such that:

e p' has only one child, p'+l for 1 < i < r;

e p' has no children or several children;

* All arcs pi+. p' for 1 < i < r are in the current implication graph;

11
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then we call p1,... ,p, a maximal chain. Given a maximal chain p1 ,... ,p,, let i be the
largest index such that p - pl is in the current implication graph. Then we update the
effective derivation tree by making p1 the (only) child of pl, and removing , 0 ,p1 from
the effective derivation tree. This type of updating continues until it is no longer possible,
always operating on the maximal chain closest to the root when there is a choice.

Thus edges (e.g., between pl and p in the above example) can appear in the effective W6

derivation tree that were not in the original derivation tree.
Let TI be the effective derivation tree after stage k, and let F be its fringe. Accordingly,

in To, all EDB facts have been pruned from T, and it coincides with the remaining
derivation tree at this point. However, as the iteration proceeds, effective derivation trees
diverge from remaining derivation trees, in general.

At the beginning of any iteration stage, the fringe consists of atoms that will be put
into the partial model during this stage, as all the required subgoal instances have been
put in during preceding stages. Thus every atom in the fringe at the beginning of the
stage is pruned from the effective derivation tree during part (a) of that stage. No change
occurs during part (b).

In order to describe the changes in the effective derivation tree that occur during
part (c) of stage k of Fast Evaluation, we define a homeomorphism h on Tk, the effective
derivation tree at the beginning of stage k (i.e., before part (a)). Let Uk = h(Tk) be formed
by mapping every node of T that has exactly one child into its nearest descendant that
either is a leaf or has at least two children. Other nodes of Tk map to themselves, and
provide the "names" of the nodes in U. In particular, F maps to itself. For u E Uk, or
9quivalently, for u E Tv such that h(u) = u, define h-1 (u) to be the set of nodes that map
into u, and define chain(u) = h-1 (u) - {u}. Every internal node of U has at least two
children. It follows (cf. complete binary trees) that lUbi < 21FI.

For any u E U, order chain(u) nodes by distance from the root, and call them pl,...,p..
During part (c) of stage k + 1 of the Fast Evaluation algorithm, arcs p3 _. p1 , p4  p,

p __ PS, etc., will be put into the implication graph. The effective derivation tree will be
updated as follows: p3 will become the child of p1 and p2 will be removed; p' will become
the child of p- and p4 will be removed; etc. I In summary, if chain(u) contains r nodes in
Tb, it will shrink to [r] nodes in T+,. We have the following relationships:

IT-I h hl-'(u)l = IU, + Z Ichain(u)l-

ITk+iI = Il- IF&I + Z [1chain(u)I
uEUA;

IV l < 2jF [ -:

' 1Arcs p4  p2 and others remain in the implication graph, of course, but play no further role in this
effective derivation tree.

12
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If we regard ITkjI as fixed and regard IUkl, lFti, and Ichain(u)I as variables, and look for
the maximum value of ITk+i 1, it can be shown (with Lagrange multipliers, e.g.) that the
maximum occurs when Ichain(u)l = 1 for all u E Uk. With this substitution, Ukj - 1lTk"

and
ITk+1I = 2IUkI - IFhI < 1ITkI

Thus ITkI will be 0 after at most logA ITI stages.
To complete the proof, it is only necessary to note that whenever a node is removed from

the effective derivation tree, either it is in the partial model (i.e., it was in the fringe), or it
has a parent. Thus the root p0 must be in the partial model when the effective derivation
tree has been reduced to nothing. i

7 Preliminary Results on Programs in MC

In this section we mention several known results that are easy corollaries of the Polynomial
Fringe Theorem.

7.1 Context Free Language Recognition

Deciding whether an input string is in a (fixed) context free language, i.e., the nonuniform
word problem, has been shown to be in MC in [Ruz8O] through a series of simulations.
In [VSBR83] it is transformed into a polynomial evaluation problem. Here we obtain the
result as a corollary, with a straightforward algorithm as well.

Corollary 7.1: The word problem for a fixed context free language is in .A/C'.

Proof: Let G be a grammar for the language, in Chomsky normal form (other epsilon-
free forms will also work). The nonterminal symbols in the grammar (denoted somewhat
unconventionally by lowercase letters) will correspond to IDB predicates, and the terminal
symbols (denoted by Greek letters) will correspond to EDB predicates. For each production
a -- be we create a nonterminal rule

a(I,K) :- b(1, J),c(J, K).

and of course a - a becomes the terminal rule

a(I,J) :-a(I,J).

Now our Fast Evaluation algorithm based on this IDB will not necessarily run in poly-
log time on an arbritrary EDB. However, to recognize strings in the language, we only
need to process certain EDB's. In particular, if the input string is a ... a,,, we put the
facts a,(0, 1), a2 (l,2), ... , a,,(n - 1,n) into the EDB. We take all such EDB's to be our

13
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class S. It is evident that an IDB atom a(s,, ) is derivable only if it has a derivation tree
, with fringe equal to the substring of symbols i + 1 through j of the input string. (Note that

this fact depends on having no epsilon productions.) This fringe is of length j - i. Hence
the program has the polynomial fringe property relative to S and, restricted to EDB's in
S, is in MC. I

7.2 Linear and Piecewise Linear Programs

That linear logic programs are in /C has independently been discovered by M. Vardi and
D. Maier, P. Kanellakis, and possibly others. (We are not aware of any published version
of this "folk theorem.") Piecewise linear programs are a natural generalization. Perhaps
they comprise the largest previously known class of JVC logic programs.

Definition 7.1: A piecewise linear logic program is one in which each rule has at most
one recursive subgoal. If in addition each rule contains at most one IDB subgoal, the
program is said to be linear. If a rule contains two or more recursive subgoals, then that
rule and the logic program are said to be nonlinear. Recall that any nonrecursive 1DB
subgoal is necessarily of lower rank than the head of the rule. 0

Corollary 7.2: Any piecewise linear logical query program is in /C.

-" Proof: We use induction on k, the rank of derivable atoms, and show that atoms of rank
k have a polynomial bound Q; on the fringe length of their minimum complete derivation

*" trees.
" The basis, k = 0, is trivial as these are EDB predicates, and we may choose Q0 = 1.

Now for k > 0 assume that derivable atoms of rank less than k have complete derivation
trees whose fringe lengths are bounded by polynomial Q-1. Consider the rules of (any)
one strong component of rank k. Any derivable atom in that component is derivable
with these rules, together with rules of lower rank. For these predicates (of rank k), each
internal node of a complete derivation tree has at most one recursive child and a number
of nonrecursive children bounded by 9, the maximum number of subgoals in any rule of
the IDB. All the nonrecursive children have rank% less than k, so have fringes bounded by
Q;-,. Thus the total fringe length is within a factor of sQ._. of the depth. By Lemma 6.1,
every derivable atom has a polynomial depth derivation tree. Thus there is a polynomial
bound Qk, on the fringe length of minimum complete derivation trees for atoms of rank k.
Since the maximum rank is bounded, the program has the polynomial fringe property. .

7.3 Elementary Chain Rules

When we consider the class of nonlinear basic logic programs, even those with a single
recursive rule, and therefore a single recursive predicate p, the water turns muddy very

14
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we can state some results. In this section we define terms and state results for certain:
nonlinear programs that have linear equivalents. In subsequent sections we examine the
more difficult question of nonlinear programs with no linear equivalents.

Definition 7.2: We say that a logic program is in join normal form if:

" Every variable that appears in the head of a recursive rule also appears in some
subgoal of that rule.

" Every variable in a recursive rule appears in some recursive atom (either the head
or a recursive subgoal).

Definition 7.3: Two basic logic programs are said to be equivalent with respect to a set
of IDB predicates S if the minimum models of both programs extended with the same
EDB, restricted to predicates in S, are the same. 0

Any basic logic program can be rewritten into one in join normal form that is equivalent
with respect to the original IDB predicates. If it started with one recursive rule it will

finish with one recursive rule. In general, new predicates and nonrecursive rules for them
will be introduced.

Example 7.1: Suppose variables X and Y appear only in nonrecursive subgoals qi, q2

and P2 of a recursive rule in a basic logic program, which we suppose to be:

pI(U,W, Z) :- q(X,U),q2(X,Y),p 2 (U, V,Y),pI(V,W, Z).

and suppose P,... ,P4 are the IDB predicates already defined. We can define a new
nonrecursive IDB predicate ps with the rule:

ps(U, V) :-q,(X,U),q2 (X,Y),p 2 (U, V,Y)•

i| Observe that the offending variables X and Y are "projected out" in relational algebra
* terminology. The variables U and V appearing in ps are just those that appeared in q,, q2

or P2 and in a p, atom as well. Now we can replace the rule given for p, by:

pI (U, W, Z) :-p 5(U, V),pI(V, W, Z).

Definition 7.4: An elementary chain is (1) an ordered list of subgoals (atoms) all of whose
arguments are variables and (2) an ordered partition of each predicate's arguments, for
each predicate appearing in the list (possibly in several subgoals). Each partition is into
left and right blocks, such that:

15
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* Certain variables appear only in the left block of the first subgoal, and are called the
left block of variables of the chain. r,

e Certain variables appear only in the right block of the last subgoal, and are called
the right block of variables of the chain.

* All variables that do not appear in the left or right blocks appear precisely in two
adjacent subgoals. The variables in the right block of a subgoal (other than the last
subgoal) appear in the same order in the left block of the following subgoal.

An elementary chain rule is a rule whose head contains predicate p, in which the arguments
of p can be partitioned into two blocks, called the left block and right block, and the
subgoals can be ordered to form an elementary chain, and moreover:

* The variables in the left block of the head of the rule appear in the same order in

the left block of the chain of subgoals.

9 The variables in the right block of the head of the rule appear in the same order in
the right block of the chain of subgoals.

* If p appears as a subgoal, the p subgoals' block definitions are the same as the head's
block definitions.

An elementary strong component is one for which there is a simultaneous assignment of left
and right blocks to all predicates in that component that makes all rules for those predicates
elementary chain rules. An elementary program is one that contains only elementary
components and is in join normal form.

Finally, an instantiated elementary chain or instantiated elementary chain rule is one
in which the variables have been instantiated to constants. 0l

Clearly, we can permute the arguments of p to make the left block precede the right
block, so we assume this is the case. We write p(X, Y) letting X represent the vector of
variables in the left block and Y the right block. We can represent chains succinctly by
writing their arguments above and between their predicate symbols, like this:

U V W X Y z
qO p q1  qo q2

Here the leftmost subgoal is qo(U, V) and it is followed by p(V, W), etc. The left block of
the whole chain is U and the right block is Z.

If the blocks are understood, we can omit the variables without ambiguity when writing
out uninstantiated chains. It is also apparent that we can replace a p subgoal by a
chain of subgoals with fresh variables and appropriate unifications, as illustrated in the
next example; this gives a correct "top-down expansion" of the rule. In other words,
elementary strong components can be manipulated much like context-free grammars,

16



treating predicates in the component as nonterminals and predicates of lower rank as

terminals. We shall usually restrict attention to simple cases, in which there is only one

nontrivial strong component and all other predicates are EDB predicates.

Example 7.2: The following is an elementary chain rule:

p(XY, Z) :- ql(X, U),p(U, V,W),q 2 (V,W, Y, Z).

The left block of p consists of its first argument, and its right block consists of the second

and third arguments. Thus it could be represented first as:

x Yz x U VW YZ
P q, P q2

and then even more succinctly as P -- q1Pq2, adopting the notation of productions in a

context free grammar. We associate the predicate symbol p with the nonterminal symbol

P in the grammar. If we make a new copy by subscripting all variables with 1, then unify

its head with p(U, V, W) and "substitute," we obtain an expanded elementary chain rule:

X YZ X U U, VIWI VW YZ
P :- qI q, P q2 q2

which obviously corresponds to the derivation P =* q919Pq 2 q. 0 0

We now consider several cases of nonlinear programs with an elementary chain rule as Ft

the only recursive rule. These cases are in join normal form, have one IDB predicate p,
and have several EDB predicates, qo, qI, q2, etc. Although we can write them and think

about them as binary predicates, recall that each variable symbol actually represents a

vector of variables. We organize the cases by the number of subgoals in the recursive rule.

The first case has two subgoals.

P1  p(XY) :-p(XU),p(UY).
p(X,Y) :-qo(X,Y).

This is a version of transitive closure, well known to be in )C. Note that the left and

right blocks must have the same arity in cases like this one, where there are consecutive p

subgoals.
The next two cases have three subgoals.

P 2  p(X, Y) :-p(X, U),p(U, V),p(V, Y).
p(X,Y) :-qo(X,Y).

Ps p(X,Y) :-p(X,U),q(U,V),p(V,Y).
p(X,Y) :-qo(X,Y).

To see that they are both in MIC, we characterize their complete derivation trees, and show

that they have the polynomial fringe property. We associate the grammars G 2 with P 2 and

G3 with Ps, where G 2 consists of P -- PPP qo and where Gs consists of P - Pq1 P qo.

17
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Theorem 7.3: The Basic Theorem problems of P 1 , P 2 and P 3 are in MC.

Proof: Because the rules are elementary chain rules, it is sufficient to characterize the
fringes of the complete derivation trees, which are instantiated elementary chains. It is
sufficient to prove the theorem for P 2 and Ps, as P1 can be simulated by P 3 with q, set %e
to the diagonal relation consisting of a tuple q1 (c, c) for every EDB constant, c.

An easy induction on the number of rule applications shows that the P 2 fringes are odd
length chains of qo's, that the P 3 fringes are chains of the form (qoql)*qo, and that all such
chains of EDB atoms are the fringes of valid complete derivation trees. Now suppose some
fringe (of either P 2 or P 3 ) contains two occurrences of qo in an odd-numbered position that
both have the same instantiations of their left block arguments; i.e., there is a qo(a, bl) and
somewhere to its right there is a qo(a,b2) in the fringe. Then by removing qo(a,bl) and
the atoms to its right, up to but not including qo(a, b2), we obtain a shorter chain that is a
valid fringe of a derivation tree for the same root atom. Thus the original derivation tree
was not minimum. Therefore, for every atom in the minimum model, there is a derivation
tree for that atom whose fringe does not have such a repetition. Since the left block of qO
can only be instantiated in polynomially many ways, it follows that P 2 and P3 have the

"-" polynomial fringe property. I

. The above proof, although not difficult, introduces a paradigm for showing that a
program has the polynomial fringe property:

(1) Characterize the fringes that the rules of the program can produce with the help of
the associated grammar.

(2) Show a polynomial bound such that if the number of occurrences in the fringe of an
instantiated atom exceeds that bound, then that fringe is not minimum.

(3) Conclude that every derivable atom has a derivation whose fringe length is polynomi-
ally bounded.

This paradigm is developed further in the next section.
The programs examined so far are only "weakly nonlinear" in a certain sense. Using

induction on the number of rule applications, it is easy to show that the linear programs:

P 1  p(X, Y) :-qo(X,U),p(U,Y).
p(X, Y) :- qo(X, Y).

P 2  p(X, Y) :-qo(X,U),qo(U,V),p(V,Y).
p(X,Y) :-qo(X,Y).

P3 p(X, Y) :-qo(X, U), q, (U, V),p(V, Y).

p(X,Y) :-qo(X,Y).

are equivalent to P 1 , P 2 and P 3 , respectively, in the sense of Definition 7.3. This equiva-
lence also follows from Lemma 8.6.
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8 Nonlinear Programs in RC

We now turn to programs that have no linear equivalent. When these programs have a
close analogy with a "balanced parentheses" language, we can draw upon that analogy to
characterize their derivation trees, and show that they have the polynomial fringe property.
We "implement" the analogy by means of GSM mappings.

Definition 8.1: Informally, a generalized sequential machine (GSM) is a nondeterministic
finite automaton that emits an "output string" in addition to consuming an input symbol
on each "move." The output string is normally over a different alphabet from the input. It
is convenient to think of a GSM in terms of a graph in which the nodes are states and the PL
arcs are labeled "a/-y" where a denotes an input symbol (consumed, not c) and -y denotes
an output string (emitted, possibly empty). There is one start state and a nonempty set
of accepting states. If a is an input string to GSM M and P is the concatenation of the
output strings emitted by some accepting computation of M on a, we call # a mapped
element of a. The GSM mapping of input string a, written M(a) is the set of mapped
elements of a. A GSM is e-free if each arc is labeled with a nonempty output string. For
formal details, see [HU79]. 0

We now introduce some terminology for discussing strings associated with a context
free grammar. Let G be a context free grammar with nonterminal alphabet V and terminal
alphabet T, and let L be the language generated by G.

Definition 8.2: A symbol is an element of V U T; a string is a sequence of symbols. A
letter is a terminal symbol, i.e., an element of T; a word is a sequence of letters. Frequently
we use a superscript, such as a', to designate a particular occurrence of symbol a. The
"I" superscript does not mean the first symbol of the string, however. A nonterminal ... ,.

production is one with a nonterminal on the right side; a terminal production is one with

no nonterminals on the right side. A sentential form of G is a string produced from the

start symbol by zero or more productions. A nonterminal sentential form of G is one that
uses only nonterminal productions. 0

Definition 8.3: The Dyck language on one kind of parentheses, DI, is the context free
language whose grammar is:

GD, S - Ej
E -,EEJ [El] I] '

Intuitively, this language consists of all "balanced parentheses" words, including the empty
word, c. We denote the language consisting of D, concatenated with an end-marker $ by
Dj$. M
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It turns out that working with D1$ avoids many technicalities where GSM mappings

are concerned; e.g., we avoid the question of mapping the empty word.
To characterize sentential forms of D1 , we need the notion of "nesting depth." It is

convenient to label the "points" between successive symbols of a string with integers. The
"point" to the left of the string is 0; the point following the i-th symbol is i; and therefore
the point to the right of a string of length n is n.

Definition 8.4: For strings over an alphabet containing [ and ] (and possibly other
symbols) we assign a left-depth to each point by starting with 0 at point 0, and moving
left to right. We add 1 whenever we cross an [, and subtract 1 whenever we cross a ]"
Similarly, we assign a right-depth by starting with 0 at the point to the right of the string,
and moving to the left. Now we add 1 whenever we cross an ], and subtract 1 whenever
we cross a [. For strings with an equal number of [ and I it is apparent that the left-depth
equals the right-depth at every point, so we can call the common value the depth of that
point. We shall restrict attention to such strings, and define the depth of the symbols in
the string. We define the depth of a [ in a string to be the depth of the point to its left,
and define the depth of a I to be the depth of the point to its right. For other symbols,
the depth of either adjacent point may be taken. 0

Lemma 8.1: A word over (,) } is in D, if and only if it has an equal number of ( and
1, and every letter has a nonnegative depth.

Proof: (This well-known fact is easier to re-prove than to find a reference for.) The =
direction is trivial. The 4= direction is shown by induction on k, where 2k is the word -. ---'

length. The basis, k = 0 or k = 1, is immediate. For k > 1, assume the 4 direction for
words of length less than 2k.

In a word w of length 2k in which every letter has nonnegative depth, find the rightmost
[ that has maximum depth, and call it [2. The [2 must be followed by a ) of the same
depth, which we denote by j 2. The depth 0 case is easy, so assume the depth is d > 0.
[2] 2 must be followed by another ). If they are preceded by a [, then let w - W, [[ 21] ws.
Clearly w1 [I tos has all nonnegative depths, so is in D1 by the inductive hypothesis, from
which it follows that w 1 Ew3 is a sentential form of GD, (there is no other way to get a
[I pair). The production E - [E] shows that w, [E] W3 is also a sentential form; hence
to E D1 . If (2)2 is preceded by a J, it also has depth d; call it 11. By maximality of d there
is a (' immediately to the left of ] '. Let W3 = w1 (1]1 [2) 2w3 . The remainder is similar to
the previous case, except that the production E - EE is used. 3

Theorem 8.2: (GSM Mapping Theorem) Let P be a basic logic program with a
distinguished IDB predicate p, other IDB predicates, P1, P2,..., and several EDB predicates
q1,q2,..., all of which p depends upon. Let P have only elementary chain rules. Let G
be the context free grammar obtained by considering P as the start symbol, considering
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P, P1 , P 2 ,... as nonterminals, and considering q, q2,... as terminals. The productions of
G correspond to the rules of P in the obvious way. That is, the right side of a production
corresponds to the chain of subgoals of a rule, and P, P1, ... correspond to p, p1,
respectively. Let L be the language generated by G. If L is the GSM mapping of D1$ for
some GSM M, then P has the polynomial fringe property, hence is in MIC.

Proof: Let F be the fringe of a minimum complete derivation tree of P, expressed as
an elementary chain, for some atom a in the minimum model. By "minimum" we mean
minimum fringe length. Let F be the corresponding word obtained by using just the
predicate symbols of F. Clearly P E L. Let a E D 1$ be a minimum length word in
M-(F). That is, P E M(a). We note that IFI = JPJ = O(Jal). Pit,-

From now on we consider a particular computation of M on a that produces F. Let
S1,... , S, be the sequence of states of M in this computation, excluding the final (accepting)
state. We partition F into subwords (Pi I = M(a,),i = 1,2,...,r), where a.--.a, are
the letters of a. We correspondingly partition F into Fl,..., F,. Let bi be the left block
of F, that is, b, is the vector of EDB constants whose components are the instantiations
of variables that occur in both the first subgoal of F and the last subgoal of F-I (or in
the head, if i = 1). We define an ID for this computation of M on a that outputs F as
the triple ID(i) = (aj, s,,b), where:

e a, is the next symbol to be read by M.

. ., is the state of M just before reading a,.

e b, is the left block of F,.

Furthermore, let d, denote the depth of a, in a, as defined in Def. 8.4. The relationships
are illustrated in Fig. 2. Note that the depth for each ( is associated with the "point" to
its left, and the depth for each I is associated with the "point" to its right.

In connection with one computation of M we get a sequence of ID's: ID(1),..., ID(r),
and a sequence of nonnegative depths 0 = di,... d, = 0.
Claim 1:
For 1 < i < j < r, if d,= di, then ID(i) j ID(j).
Proof of Claim 1:

Suppose there are distinct positions in a, say i <j, such that d. = di and ID(i) = ID(j).
From the definition of depth and the fact that a, = aj, it follows that there are an equal
number of [ and ) in the subword a- a.i. It follows immediately that a' E D1$.

Now we remove the subchain F through Fj_1 from the original fringe F. What remains
is still an elementary chain, as now bi, which equals b,, connects properly to Fi (or to
the left block of the head, if i - 1). Also we remove the subword F, through F_ 1 from
F, and we remove a, . aj_ from a, giving words F' and a'. The situation is depicted in
Fig. 3.
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F= q,(a,b), q, (b,c), qo(c,d), ... , q2(x,y), qo(y,z)

F q, q qO ... q2 qO

.a- (C ( .. Ef)]0(""

S1 82 83 84 85 86 87 ...

a c c d e e g ... X

d,= 0 1 1 11221 ... 1 1.0.0

Figure 2: Derivation fringe for p(a, z), ID of a GSM computation, and nesting depth.

Since s, = si, M was in the same state before reading c4 as before reading aj. Also,

*a, = a, = a:. Thus the transition si --+ sj+l consuming a, and emitting F, is legal for M.

Define a computation of M on a that mimics the computation on a except on ai ... aj-1.

When ais reached, make the transition , -- a+ consuming a and emitting E . This

computation is legal for M operating on a', so F' E M(DI$). Moreover, by the minimality

of a for Fr, we have that P is a proper subword of F.

That is, iF'l < IFI and F' is the fringe of a complete derivation tree for the same atom

a. This contradicts the assumption that the original derivation tree was minimum. It

follows that ID(i) A ID(j) for any distinct a, and a, at the same depth. 0
We next show that the depth of any letter in a is polynomially bounded whenever F

corresponds to a minimum derivation. The argument is a more complicated version of the

one that showed that ID's at the same depth must be distinct.
Claim 2:
Let d,,, be the maximum depth of any letter in a. Then d,, is polynomially bounded.

Proof of Claim 2: L

Let m, 1 < m < r be a position of maximum depth; i.e., am has depth d,". Select a

subsequence (i0,.., ,,,,) of (1,..., m) such that:

e d,, the depth of ai, equals k.

* d,>kforallisuchthatii.<i<m.

We call this the left subsequence. Clearly ID(ik) is defined for each k, 0 < k < d,..

im). Similarly, select a right subsequence (jo,..., jd,.) of (r, r - 1,..., m) such

that:

Sdj,, the depth of aj,, equals k.
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(a1 , si, b) =ap (, bj)

depth 0.

I~

g bi 6'.

F.'f".-'d

Figure 3: Illustration of Claim 1. INa cannot repeat at same level.

P*d, > kfor alljsuch that m <j<

Again ID(jj,) is defined for each k, 0 < k < d... Finally, for each depth 0 < d < d,,,., we
form the pair Z( = (ID(d),'ID(id)).

Suppose there are two distinct integers, 0 < d < e < d,,,., such that Zd =Z.. Let us
simplify subscripting by setting i = ij, j = S., k = j., and I = jd. Note that i < j:5 k < 1.
We now remove two subwords of a, namely cuj ... aj- and a,, ... Cil- 1, obtaining a shorter
word a'. a' clearly has an equal number of C's and J 's, so "depth" is defined. The main
point is that the depth in a of all letters in a, ...I is at least e, so that the depths of
corresponding letters in a' are at least d, hence nonnegative. Thus a' is also in D.$. We
also define P' and F' by removing subwords and subchains corresponding to the letters
removed from a. The situation is depicted in Fig. 4.

It is straightforward that M maps a' into k' with an accepting computation, and that
F is the fringe of a complete derivation tree that derives the same atom as F derived. The
details are similar to the argument for Claim 1. Since a was minimal for F, F' is strictly
shorter than F. This contradicts the assumption that F was minimum; therefore Zd and
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(cri, si,bi) (crkj- j, 8( k k bk) = (al 1, bl)* Iq

,. ,.o., dj =dk:4,"

depth "

d di

b b bl bl:::

F fFjj F, kF
F'-7Jj:2iF-

Figure 4: Illustration for Claim 2. Certain pairs of IDa cannot repeat. Dotted curve
denotes positions not in left or right subsequence.

Z, must have distinct values whenever d 6 e. There are only polynomially many possible
values for Z, so d,... is polynomially bounded. 0

To summarize, the depth of a is polynomial, and the same ID cannot occur twice at
the same depth, thereby bounding the number of symbols of a at each depth, so the length

of a is polynomially bounded. Since JFJ = O(flal), the theorem follows. I N.--

A sequential transducer is essentially a GSM that can also make transitions and produce
output without consuming an input symbol; such transitions are called E-moves.2 We
remark that this generalization gains us nothing, as sequential transducer mappings of
DIS give the same family of languages as GSM mappings of Dl$. To see this, suppose that
w is a possible output string of sequential transducer T operating on input a E D1 S, where P'
a is written with e's inserted wherever the sequential transducer will make an E-move in
its computation. Form -y by replacing each [ in a by ((,replacing each ) in a by 1), and
replacing each e in a by [1. A GSM is easily constructed (not dependent on a, of course)

'These moves are not to be confused with moves that consume an input symbol, but output nothing.
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that imitates T to produce w as a computation on -y.
As an application of the theorem on GSM mappings of D1S we consider:

P 4  p(X,Y) :-q,(X,U),p(U,V),q2 (V,W),p(W,Y).
p(X, Y) :-qo(X, Y).

Let G 4 and L4 be the grammar and language corresponding to P 4 . G4 , given by P -

qlPq2P I qo. We observe that all words in L4 have an equal number of q1's and q2's, and
that for any k > 0, words of the form q (qoq 2)k q (qoq 2)k ... q"(qoq2)' qo are in L4. It
appears that all such words cannot be recognized by any finite-turn push-down automaton,
as defined in [GS66,HU79], hence are not in a linear context-free language. We therefore
do not expect to find an equivalent linear program for P 4 , as we did for P 1 , P 2, and P3 .

To apply the GSM mapping theorem, we define a GSM M 4 as shown in Fig. 5. The
arc label "a/-y" means "consume input symbol a and output string -Y.

( q
q, ,

I/qO q2

Figure 5: The GSM M 4, with start state 0 and accepting state 1.

Lemma 8.3: A word w of qo, qj , and q2 symbols is in L4 if and only if w E M 4(D , $).

Proof: (=s) Proceed by induction on k, the number of applications of the nonterminal
production of G4. Note that jIw = 3k + 1. For k = 0, M4($) = {qo}. For k > 0,
assume the lemma is true in the => direction for derivations with less than k nonterminal
production applications. The first production of a k step derivation of w replaces the

- starting P symbol, say P0 , by q1P'q2P 2 . Then P ' and P2 have derivations of fewer than
.' kc nonterminal steps that yield w1 and w2 such that w = qlw q2w2 . By the inductive
*'i hypothesis, there exist a and 0 in D1 $ that are mapped by M 4 into w1 and w2 . Let a' be
* a with its $ end-marker removeo and define
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It is clear that -y E D 15. Now we claim that M4 (-y) = {qjw 1q2w2}. The only change is that
M 4 emits the qO at the end of w1 (as part of qoq 2) when it reads the "new" I of -y instead
of when it reads the $ of a.

(€=) Proceed by induction on the length 2k + I of the word -y in D1 $. The base case,
k = 0, is trivial. For k > 0, assume the lemma holds in the o= direction for shorter words, .

which are of the form 2k' + 1 for some 0 < k' < k. In a wordy -of length 2k + 1 find
the rightmost [ letter that has depth 0, and call it (1. This letter must either be the first
letter of -y, or mut be preceded by a ] of depth 0. There is precisely one ] of depth 0 to
the right of [1, and it is immediately followed the the $ end-marker; call this letter ] 1 " .

If C' is not the first letter of -y, partition -y into a'fl, where P consists of [1 and all
following letters. Let a be a' with $ appended. It is clear that both a and 6 a.- in
Dl$. Let M4(a) = ( 1} and M 4 (/3) - {w 2 }. (The mappings are singleton sets, since
M 4 is deterministic.) By the inductive hypothesis, w' and w2 are in L4 . But then so is
w = qw 1 q2w , and again it is easy to see that M4 (y-) = {w).

If (1 is the first letter of'y, partition -y into ['a'] '$. By definition of [1, a' (as a subword
of -y) contains no letters of depth 0. Consequently, a' (as a word) is in D1. Let a be a?
with $ appended; a E Dj$. Let M4 (a) = {w)}. By the inductive hypothesis, w' is in L4.
But then so is w - q~w'q2qo, and again it is easy to see that M4 (-y) = {w}.

Corollary 8.4: P 4 has the polynomial fringe property, hence is in -C.

Corollary 8.5: The following program is in MC:

Ps.o.2  p(X, Y) q, (X, U), p(U, W), p(W, Y).
p(X, Y) :-qo(X,Y).

Proof: For each EDB constant c add an atom q2 (c,c) to the EDB, then run the algorithm
onP. ""

For our next application of the GSM Mapping Theorem, we show that P6.0.2 can be
generalized to a family of elementary single rule programs with only one nonrecursive
subgoal that are in C.s The next program represents a family of programs indexed by i
and j, where 0 < i < j, and j > 0. The notation p() denotes i occurrences of P.

P 5 , p(X, Y) p(X, U,), p(U,, U2), , p(Ui, V),
q, (V, W,), p(W,, W 2 ), p(W 2, Wp), - . P(W,, Y).

p(X,Y) :- qo(X,Y).

which is succinctly expressed by the grammar Gs.,.i consisting of P -- P(')qP() qo. The
complexity of Ps.,.j in the general case is open. However, we can show that the cases i = 0

3 Pure recursions, P -. P. P-P P I qo, are obviously in XC, being equivalent to P -. qo "qo P I qo.
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and i = 1 are in JIC for all j. The case i = 1 relies on the following lemma to show that
it is essentially the same as the case i = 0. It is immediate that two elementary programs
are equivalent in the sense of Definition 7.3 if their corresponding grammars generate the
same language.

Lemma 8.6: Let G be a grammar with nonterminal symbol P in which the only produc- p
tions for P are:

P P'yP qo

Here q0 is a terminal and -1 is a string possibly containing both terminals and nonterminals.
Then L, the language generated by G, is also generated by G', where G' is obtained from
G by replacing the productions for P by:

P - qoyP qo

Proof: We observe that the derivation in G:

P =:: P-YP * PYP-YP

is ambiguous, in that the third string can be derived by replacing either the first or the
last P in P-yP; consequently, when parsing a string, we can assume that such derivations
are always obtained by replacing the last P. It follows that any word in L has a derivation
in which the P immediately to the left of -y is always replaced by qo, and never by PyP.-"
In other words L is also generated by the grammar G'. -

To apply the GSM mapping theorem in the cases i = 0 and i = 1, we define M5 .j. as
shown in Fig. 6. Observe that M6..4 uses more of the power of the GSM Mapping Theorem
than M4 in that it accepts only a subset of Dl $, yet it does not use the full power, since
it is deterministic.

Lemma 8.7: Let i = 0 or i = 1. A word w of qo,and q, symbols is in L5 .,., if and only if
w E M 5.j,.(D 1 $).

Proof: It is sufficient to prove the case i = 0, for then the case i = 1 follows by Lemma 8.6.
(=:.) Proceed by induction on k, the number of applications of the nonterminal pro-

duction of G6.0.1 . Note that k is the number of q, symbols in w, and jw( = (i + j)k + 1.
For k = 0, Ms.0j($) = {qo}. For k > 0, assume the lemma is true in the -> direction
for derivations with less than k nonterminal production applications. Let the rightmost
occurrence of q, in w be in w,,. Let P 4> w be a leftmost derivation, i.e., at each step
the leftmost nonterminal symbol is replaced by the right hand side of a production. Then
the last use of P - qjP(i) in this leftmost derivation produces the occurrence of q, in

Win. There are at least j occurrences of qo after w,,. Thus the substring W, ... W, +-

contains qlqo(o. We define w' by replacing this substring of w by a single q0. Clearly
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Figure 6: The GSM Ms.j.3 , with start state 0 and accepting state j-1, where i - 0 or i - 1.

* w' E L5.0., and the inductive hypothesis applies to show that there is some a? E D1 $ such
that w' E Ms.o.(a'). Partition a' into a'c?,2 such that M5.0., emits w, in response to the
first symbol of a'. Thus a2 contains only I 's. Now form a by inserting j - 1 Cs followed
by j - 1 ] 's between a, and a?. Then w E Mas.o.j(a).

(%=) Proceed by induction on the length, 2k(j - 1) + 1 of the word a in D j $. Note that
the 's of a must form k groups of " - 1 each, or else M. 0.j will not accept a. The base
case, k = 0, is trivial. For k > 0, assume the lemma holds in the -4 direction for shorter
words. In a word a of length 2k(j - 1) + 1 find the rightmost group of j -1 ['s; they must
be followed by j - 1 ]'s. Remove these 2(j - 1) letters, creating a'.1 Clearly a' E D$
and is accepted by M5.0.,. Let w' be the string emitted by Ms.0.. operating on a, and let
w., be the symbol emitted in response to the letter immediately after the removed letters.
w' E L5 .0 , by the inductive hypothesis. w' must be a qo because there are no Us further
to the right in a?. In the derivation tree for w' replace the derivation for w,, which was
P = qo, by the derivation P * qjP(3); then replace these new P's by qo's, giving a new
string w. Clearly, Ms.o.,(a) = {w} _ Ls 0.. |

Theorem 8.8: Let i = 0 or i = 1. Ps.,.j has the polynomial fringe property, hence is in
MC.

'There may be more ]'s to the right of the removed letters.
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Proof: Immediate from Lemma 8.7 and the GSM Mapping Theorem. |

We obtain the "mirror images" P", PRo, and PRI~ by reversing the subgoal chains in
the obvious manner. They are also in )IC, therefore.

In Section 9, Definition 9.1, we define a recursive subgoal in an elementary chain rule
to be cut off if it not at either end of the subgoal chain and is either partially or completely
surrounded by nonrecursive subgoals. Cut-off recursive subgoals play an important part in
simulating Boolean circuits for P-completeness proofs, apparently because such subgoals
have no variables in common with the head of the rule. In that section we conjecture that
any elementary single rule program in which the recursive rule has two cut off recursive
subgoals is P-complete.

Recall that elementary programs, being in join normal form, cannot have two consec-
utive nonrecursive subgoals; consequently, any rule with k nonrecursive subgoals has at
least k - 1 cut off recursive subgoals, and may have more.

Based on our conjecture, and assuming NC # P, the following program appears to be
the longest elementary single rule program that is in )IC and whose recursive rule contains
two EDB subgoals.

P 6  p(X,Y) p(X,T),q(T,U),p(U,V),q2 (V,W),p(W,Y).
p(X,Y) :-qo(X,Y).

Let Go and L6 be the grammar and language corresponding to Pe. Thus Go is given by
P --* Pq 1Pq 2P Iqo. That P 6 is in XIC is immediate from Lemma 8.6 and the fact that
P 4 is in ,C.

This is about as far as we can go with elementary single rule programs in 1 C. We
shall see in the next section that several ways of extending such rules with more subgoals
(remaining in join normal form) result in programs that are P-complete. We conjecture
that this is always the case.

However, the GSM Mapping Theorem applies to programs with more than one recursive
rule, provided each that rule is an elementary chain rule.

Example 8.1: In this example a single nonelementary chain rule is first transformed into

two elementary chain rules, then the theorem is applied.

P7  p(X, Y) p(X, V), q1(V, W),p(Y, W).
p(X, Y) :- qo(X, Y).

It is convenient to identify p(Y,X) with p(X,Y), qo (Y,X) with qo(X,Y), and qR(Y,X)
with q1(X, Y). This leads to the elementary chain rules:

P'7  p(X,Y) :-p(X,V),q,(V,W),pR(W,Y).
p(X,Y) :-qo(X,Y).

pR (X,Y) :-p(X, V),qR(V,W),pR(W,Y).p R(X, y) :-qoR(X, Y).-...
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Let G7 and L7 be the grammar and language corresponding to P7. Thus G7 is given by
"*" the following productions (P is the start symbol): q

P . pq PR qo

PR PqRPR I R

It is easy to show that L7 consists of certain odd-length words with q0 or qO in all the
odd positions, and q, or qR in the even positions. The first position must contain q0.
Let us interpret every symbol after the first as a left parenthesis if it does not have
superscript R and as a right parenthesis if it does have superscript R. The specification
of L7 is completed by requiring that the symbols after the first, thus interpreted, comprise

- a "balanced parentheses" word. The proof that this characterizes Ly is a straightforward
induction in each direction, and is omitted.

* To apply the GSM mapping theorem, we define M 7 as shown in Fig. 7

IIqot

" Figure 7: The GSM M7 , with start state 0 and accepting state 3. _

., q,

Clearly, M7 (D1 $) implements the characterization of LT given above. Consequently

*:: (subject to the proof of that characterization), P 7 , and hence P 7 , are in )AC. 0

Unfortunately, the idea of replacing nonelementary chains by a set of elementary chains
.- does not generalize to (truly) tertiary predicates, at least as far as we can see.

Example 8.3: Consider the program:

PS p(X,Y, Z) :-p(X,U, V),q,(U,V,W),p(Y,W, Z). m-
p(X,Y, Z) :-qo(X,Y,Z).
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We can define Pl,...,Ps to be p under the various permutations of its arguments, but we PF
cannot maintain the left block as a single argument in the resulting rules. Consequently
some "substitutions" are incompatible, and the CFG analogy breaks down. 0

9 P-Complete Logical Query Programs

In this section we show P-completeness for a number of logical query programs that are in
some sense just beyond the boundaries of the ones we have already considered. Assuming
that NC :A P, this indicates that some of the NC "templates" for logical query programs
of the type we are considering cannot be further generalized, at least not in obvious ways.
Other formulations of logical query programs are possible, of course.

In particular, Cosmadakis and Kanellakis [CK851 have studied formulations with more
of a relational database "flavor," for which they coined the name "sirup" (for SIngle RUle
Program). For example, they have obtained some results for typed rules, which are defined
in analogy with typed tableaux. E.g., if U appears in the first argument of one occurrence
of p, and appears in the second argument of some other occurrence of p in the same rule,
then that rule is not typed.

9.1 P-Complete Elementary Single Rule Programs

Elementary chain rules, as remarked before, have a close analogy with context free gram-
mars. The GSM Mapping Theorem states that GSM mappings of D1$ are in IC. Yet it is
known that any CFL can be represented as a GSM mapping of D2, the Dyck language on
2 kinds of parentheses [Gre73]. It is instructive therefore to demonstrate that elementary
chain programs can be P-complete.

We now consider the smallest (in total literal count) P-complete elementary single rule
program:

Pul p(X,Y) :- q(X,U),p(U, V),p(V,W),q(W, Y).
p(X, Y) :-qo(X, Y).

The proof that P 11
5 is P-complete provides a paradigm that can be used for many

programs. Observe that the subgoal chain has two occurrences of p that are "cut off"
from the end of the chain by q, atoms. The basic idea is that when the rule is instantiated,
the head "represents" the output of a particular gate of a circuit, and the two recursive
subgoals "represent" its inputs. We want to simulate the circuit by setting up an EDB
based on the circuit that has this property for each gate g in the circuit: p(go,g9) is true

(derivable) if and only if gate g outputs a 1.
A useful intuition is to interpret p(gO, gg) also as meaning there is an electrical path

from gO to g9 allowing current to flow. If g is an and gate, we want the only possibilty to

'Our numbering of programs has some gaps.
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be a "series" path that goes through one input, returns to a point associated with g (g4 in
the case of P11), and then goes through the other input. Thus current can flow through
g if and only if it can flow through both of g's inputs. For an or gate we want "parallel"
paths, so that current can flow through g if and only if it can flow through at least one of
its inputs. 't 't

We now describe a subclass of monotone Boolean circuits that can be simulated by P 11 .
First, let us designate the class of all monotone Boolean circuits by C, and the subclass of
monotone Boolean circuits with only two inputs, which can be designated left and right
arbitrarily, by C1. It is well known that any circuit in C can be transformed in log space
to an equivalent circuit in C1.

We designate our special subclass by C2 . The binary circuit elements for C2 are and
and or gates with precisely two distinguished inputs, called the left input and right input,
and one or two distinguished outputs, a left output, or a right output, or both. In our
terminology an output of one gate connects as input to precisely one other gate; "fan out"
is achieved by having multiple outputs on a gate. In addition, there are source elements
with no inputs and one or two outputs that emit logical Os or 1s, called 0 and I gates
appropriately. Their outputs are also distinguished as left or right. Finally, for a circuit .
to be in C2, we require that only left outputs be connected to left inputs and only right
outputs be connected to right inputs.

Lemma 9.1: There is a log space transformation from C to C2 that preserves the output
values of circuits.

Proof: Suppose some element g in a CI circuit has outputs that are connected to m > 1
left inputs. Let the left and right inputs to g be el and e,, respectively. Transform the -

circuit by introducing an additional and gate g' and an additional I gate gl. Let gate h
be one of the gates connected to an output of g. Connect m - I outputs from g' to all of
the elements that g was connected to, except h, and remove those g connections; designate
the g output that goes to h as the left output of g, and give g a right output that connects
to the right input of g'. Finally, connect the left output of g, to the left input of g'. It
is evident that this produces an equivalent circuit, and that the transformation can be
repeatly carried out in log space until no gate has outputs connected to more than one left
input. A corresponding transformation can remove outputs connected to multiple right
inputs. -

Therefore, we are justified in calling a basic logic program P-complete if we can use
it to simulate circuits in C2. More precisely, we need a log space transformation from C2

circuits into EDB relations and a particular "theorem" to decide, such that the theorem
holds in the extended logic program if and only if the circuit outputs a 1.

We now demonstrate such a transformation, T11, for P 11 . This transformation forms
EDB constants by concatenating the "name" of a gate with a digit 0-9, which designates
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the "purpose" of that constant. For example, if e is the name of a gate, constants e0 and
e9, among others, will be created. One "purpose" of these constants is that p(eO, e9) should
be true if and only if gate e outputs a I in the circuit. In particular, if e is a I gate, then
T11 will put qo(eO, e9) into the EDB.

First we shall informally explain the principle upon which T11 is based. Expand the
recursive rule by substituting once for each recursive subgoal. In terms of a derivation, we
have

P = qPPql 4 q, qippqi q-ppq' q.

Then consider an and gate e with left input f and right input g, and instantiate the
expanded rule as follows (indentation is only to highlight relevant phrases):

p(eO, e) :- q,(eo, el),
q1(el, fO),p(fO, f9), p(fg, f2), ql (f2, e4),
q, (e4, g7), p(g7, gO), p(gO, g9), q,(gg, e8),

qi(e8, e9).

We next replace p subgoals whose arguments are not of the form (zO, z9) by corresponding
qo subgoals, and represent the result more succinctly as:

eO el fO f9 f2 e4 g7 gO g9 e8 e9
q, q, P qo q, q, qo P q, q-

We want p(eO, eg) to be derivable if and only if both p(fO, f9) and p(gO, gg) are
derivable. T11 will put the following atoms into the EDB to make this come about:

* q,(el, fO) and q,(f2,e4) because e has left input f;

* q, (e4, g7) and q, (gg, e8) because e has right input g;

* qj(eO, el) and qi(e8, eg) because e has inputs;

* qo(fg, f2), qo(f7, fO), qo(gg, g2), and qo(g7, go) because the outputs of f and g are
used.

The procedure for an or gate e with left input f and right input g is obtained by
modifying the and procedure. (We eschew a shortcut that is possible in this case, in order
to demonstrate a technique that is generally applicable.) Expand the rule as indicated by
the derivation:

P =* qPPq => q, qPPq Pqj

Instantiate the expanded rule twice and replace certain P's by q0's as before. The first
expansion contains constants related to the left input of e:

eO el fO f9 f2 e4 e8 e9
q, 91 P qo 91 qo q,
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and the second expansion contains constants related to the right input of e:
I-o

eo el gO g9 g2 e4 C8 e'
q, qz P qo qz qo q.

We want p(eO, e9) to be derivable if and only if p(fO, 19) or p(gO, g9) (or both) are derivable.
TI, will put the following atoms into the EDB to make this come about:

* q(el, fO) and q,(f2, e4) because e has "or" input f;

* qI(el,gO) and qi(g2,e4) because e has "or" input g;

. qo(e4, e8) because e is an or gate;

q(e0,el) and q,(e8, e9) because e has inputs;

* qo(/9, f2), qo(f7, fO), qo(gg, g2), and qo(g7, go) because the outputs off and g are
used.

Clearly, T11 can run in log space and it produces an EDB that will enable P 11 to derive
p(zO, zQ) if gate x outputs a 1. In the next lemma we show that the "only if" direction
also holds.

First we summarize the EDB produced by TI, in Fig. 8, according to the gate appearing
in the left block of each EDB fact. Let z stand for any gate in the circuit C.

EDB contains: if z is:

qo(xO, z9) a 1 gate
qo(z4, z8) an or gate
qO (z7, zO) any gate
qo(zg, z2) any gate

q(x0, zI) an and or an or gate
qi(zl, /0) an and gate with left input f
qz (zl, 10) an or gate with either input f

qI(x2, h4) left input to and gate h

q1(x2, h4) either input to or gate h
q, (x4, g7) an and gate with right input g
q, (z8, xg) an and or an or gate
q, (z9, h8) right input to and gate h

Figure 8: EDB produced by T-
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Lemma 9.2: Let C be a circuit in C2 and let Tux(C) be the associated EDB. Let z be any
gate in C. We define 11 for all k > 0 to be the "partial model" consisting of p atoms that
are derivable by P11 extended with T1l (C) with at most k applications of the recursive rule.
Then the following hold for all k, and in particular for the minimum model of PuIUTII(C):

(1) Neither p(x2, Z) nor p(z8, Z) is in IA for any Z.

(2) If p(xg, Z) is in Ik, then Z = z2. If p(z7, Z) is in IA, then Z = zO.

(3) If x is an and gate with left input f and p(zl, Z) is in Ik, then Z - e4 and p(fO, f9)
is also in I•k

(4) If z is an and gate with right input g, and p(z4, Z) is in IA, then Z z8 and p(gO, g9)
is also in Ik•

(5) If z is an or gate with inputs f and g and p(xl, Z) is in Ik, then Z z4 and p(fO, f9)
or p(gO, g9) is also in Ih.

(6) If x is an and or an or gate and p(zo, Z) is in I, then Z = z9 and both p(zl, z4)
and p(x4, z8) are in Ik.

Proof: We use induction on k, the number of recursive rule applications. Note that
nonrecursive rule applications are not counted. Since the minimum model coincides with
I4 for some finite k, this will establish the lemma. The basis, k = 0, is immediate.

Assume that (1)-(6) hold for 4-. We shall cite items of this inductive hypothesis as
(1H)-(6H). We say that a p atom reduces to a chain of subgoals if some substitution unifies
the head of the rule with that p atom and unifies the subgoals of the rule to that subgoal
chain. Also, we say a reduction fails on a subgoal if no instance of that subgoal is in I...-.
Clearly Ik-i C Ik.

(1) If p(z2, Z) is derivable in k steps, then it must reduce to

q1 (x2, h4), p(h4, V), p(V, W), q, (W, Z)

where h is a gate and p(h4, V) is in lk-I. If h is an or gate, no q, has h4 in its left
block, so qo(h4, h8) is the only possible reduction. If h is an and gate, then V must
be h8 by (4H). Either way, V = h8 and the reduction fails on p(h8,W) by (1H).
It follows that p(x2, Z) is not in 4 for any Z. Similarly, using (2H), p(x8, Z) must
reduce to

q1 (x8, z9), p(z9, x2), p(z2, W), q, (W, Z)

which fails on p(x2, W).

(2) The only recursive reduction of p(zg, Z) is
q1, h) p(h8, V), p(V, W), q, (W, Z)

which fails on p(h8, V), by (1H). There is no recursive reduction at all for p(x7, Z).
Therefore the nonrecursive reductions to qo(xg, z2) and qo(x7, xO) must be used.
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(3) Using (611) and (2H), p(zl, Z) must reduce to

qi Czl, fO), p(fO, f9), p(f9, f2), q, (f2, Z)

where f is the left input of and gate z. But by the requirements of class C2, the left
output of gate f connects only to z, and the right output of f cannot connect to any
gate's left input, so z is the only gate with left input f. Therefore the only instance
of q1(f2, Z) in the EDB is Z z4.

(4) Using (2H) and (611), p(z4, Z) must reduce to

q, (x4, g7), p(g7, gO), p(gO, gg), q, (gg, x8)

where g is the right input of and gate z. Here we used the fact that z is the only
gate with right input g, by membership in C2.

(5) Using (6H) and (211), p(zl, Z) must reduce to

q, (xl, fO), p(fO, f9), p(fg, f2), q, (f 2, z4) ""

where f is an input of or gate z.

(6) Using (3H) and (5H), p(zO, Z) must reduce to

qi(gO,xl),p(zl,x4),p(x4,W),q,(W, Z)

Then if z is an and gate, by (4H), W = z8. However, if z is an or gate, p(z4, Z)
must reduce to qo(z4, z), so that again W = z8. It follows that Z = z9. 3

." Theorem 9.3: P11 is P-complete.

" Proof: Reduction from Monotone Circuit Value is accomplished by first transforming the
given circuit into an equivalent C3 circuit, then using T11 on that to construct an EDB for
P 11 . The previous lemma shows that the circuit outputs a logical 1 at gate z if and only
if p(zO, z9) is a theorem of the resulting extended logic program. .

We next consider the elementary single rule program that results if we insert an extra
subgoal into P 4 , at the left end.

P 12  p(X, Y) :-p(X,T),p(T,U),q(U,V),p(V,W),q(W,Y).

p(X,Y) :-qo(X,Y).

which is succinctly expressed by the grammar G12 consisting of P -* PPqPq I qo.
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Definition 9.1: We say that a recursive subgoal in an elementary chain rule is completely
cut off if there are nonrecursive goals between it and both ends of the subgoal chain. We
say that a recursive subgoal in an elementary chain rule is partially cut off if it not at
either end of the subgoal chain and the subgoal chain contains at least one nonrecursive Z'..

subgoal. 0l

Observe that the subgoal chain in P 12 has two occurrences of p that are cut off from -

the end of the chain, one partially and one completely. The basic idea for the simulation
of a circuit is to expand the leftmost p subgoal and assign constants as suggested below.

eO fo f9 fA 2 e4 g3 go g9 C9
qo p q, q0  q2 qo qI P q

Here we assume e is an and-gate with left and right inputs f and g.

EDB contains: if x is:
qo(zO, x9) a I gate
qo(zo, fo) an and gate with left input f
qo(zO, fO) an or gate with either input f
qo(zl,z2) any gate
qo(x4,g3) an and gate with right input g
qo(z4, z5) an or gate
qo(z6, z7) an or gate

q, (z3, z0) any gate

q, (zS, z6) an or gate
q, (zg, zl) any gate

q, (zO, xl) an and or an or gate
q2(z2, h4) left input to and gate h
q2 (z2, h4) either input to or gate h
q2(z7, z9) an or gate
q2(z9, h9) right input to and gate h

Figure 9: EDB produced by T12, where z is any gate.

PP
Theorem 9.4: P 12 is P-complete.

Proof: Define transformation T12 to transform a circuit CE C2 into the EDB described
by Fig. 9. The inductive hypothesis is: _
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Sp(eO, Z) is derivable =€ Z - f0 or Z - e4 or Z = e9. If Z - e4, then p(fo, f9)
is derivable, where f is the left input of and-gate e. If Z = e9, then p(eO, e4) is
derivable, and p(gO, g9) is derivable, where g is the right input of and-gate e. (There
are obvious adjustments when e is an or-gate.)

* p(xl, Z) is derivable =, Z z2.

e p(e4, Z) is derivable =. Z = g3, where g is the right input of and-gate e. (Adjust for
or-gate.)

* No instances of p(x2, Z), p(z3, Z), or p(zg, Z) are derivable.

The argument follows the same lines as for P 11, so further details are omitted. |

Conjecture Any elementary single rule program in which the recursive rule has two or
more cut off recursive subgoals, at least one of them completely cut off, is P-complete.

The ideas used on P 11 and P 12 appear to be generalizable. However, a word of caution
is in order. If a certain template, such as Pu, is P-complete, it is tempting to conclude
that more complicated programs, in which P 11 can be embedded, are also P-complete.
However, this is not automatically true; it needs to be proved.

9.2 Other P-Complete Single Rule Programs

In this section we briefly summarize a pot pourri of P-completeness results for various
logical query programs.

Path Systems [Coo74,JL76] is well known to be P-complete, and is in fact the "first"
P-complete problem. It is very naturally represented as the logical query program

P 21  r(X) :- h(X,Y,Z),r(Y),r(Z).
r(X) :- s(X).

where a and h are EDB relations specifying "sources" and "hyperedges," and r signifies
"reachable."

Example 9.1: Cosmadakis and Kanellakis [CK851 discovered that an interesting variant .
of Path Systems, called the blue-blooded Frenchman problem, is also P-complete:

P22  r(X) :- h,(X, Y), r(Y), h2(X, Z), r(Z).
T(X) :- s(X). .-

Essentially this means that we can require h to be the equi-join of h, and h 2 in Path
Systems. An easy proof for P 22 is by reduction from Monotone Circuit Value. Let C be a
given circuit in C1.

* For each and gate e with inputs f and g we put hi(e,f) and h2(e,g) in the EDB to
signify that e has f as its left input and g as its right input.

a...........
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* For each or gate e with inputs f and g we put h,(e,f) and h,(e,g) in the EDB to
signify that e has f and g as its inputs, and we put in h2 (e,e') and s(e') to allow ""
derivations to be completed.

• For each 1 gate c we put s(e) in the EDB.

An easy induction on proof length shows that if r(X) is true, then either X = e' for some BMW
or gate e E C, or X = e for some gate e E C that outputs a 1.

A more intriguing approach is to simulate a scanning Turing machine' directly with P 22.
The main idea is use h, to verify the tape symbol and use h2 to verify the state transition
in such a way that r(X) is true exactly when X is a reachable local ID, consisting of an
encoding of (time, head-position, state, symbol-scanned). The details are omitted, as the
ideas can be found in [Coo74], where it is shown that any language in P can be accepted
by some scanning Turing machine. El

Let us define pure recursion as the use of recursive rules in which every subgoal is
recursive. For example, P1 and P 2 employ pure recursion. The next example demonstrates
that pure recursion can be P-complete.

Example 9.2: The following program employs pure recursion and has a single recursive
rule in which the subgoals represent a chain, but not an elementary chain. That is, the
left block and right block are defined for each literal, but different literals with the same
predicate symbol have different block structures.

P 23  p(WX,Y,Z) p(UW,U,V),p(V,X,Y,Z).
p(WX,Y,Z) :- qo(W,X,Y,Z).

For the rule head and the rightmost subgoal, the left block is argument 1 and the right
block is arguments 2, 3, and 4. But for the left subgoal, the left block is argument 2 and
the right block is argument 4; arguments 1 and 3 are in neither block.

Proof of P-completeness is by reduction from Path Systems. Given an EDB for P 21,
we encode qo as the cross product, a x h. It then follows that the minimum model of P2s
will be the cross product p = r x h, where r is the minimum model of P21 - El L

Our final example has the interesting property that it is P-complete for unrestricted
EDBs, yet is in R-C for EDBs in which the q0 relation is "acyclic," in the sense defined in
the example.

Example 9.3: Consider the following program, called Transitive Closure with Permis-
sions. It exhibits a nonchain rule:

P24  p(X, Y) :-q, (X, Y), p(X, U),p(U, Y).
p(X, Y) :-qo(X,Y).

"A scanning TM scans the tape in the fixed sequence 0, 1, 0, -1, 0, 1, 2, 1, 0, -1, -2,
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The proof of P-completeness for unrestricted EDBs is by reduction from Monotone Circuit
Value for circuits in C1. To sketch the main idea, we want and gate e with inputs f and
g to output a 1 if and only if p(eO, e9) is derivable, and we want p(eO, e9) to be derivable
only if both p(e0, e4) and p(e4, e9) are derivable. Thus we put q1(eO, e9) in the EDB. By
judicious choice of q, and q0 EDB facts we ensure that

. p(e0,e4) is derivable if and only if p(fO, f) is derivable;.'." p(e4, e4) is derivable if and only if p(gO, gg) is derivable.

Additional details may be worked out by the interested reader.
It is also easy to see that P 24 is in NC when the EDB is restricted to include any qi _ .

relation, but only qo relations that define the edges of a directed acyclic graph. For the q0
atoms in the fringe of any complete derivation tree form a chain, and constitute a constant
fraction of all atoms in the fringe. Thus P 24 has the Polynomial Fringe Property when
restricted to this class of EDBs. .

10 Conclusion and Open Problems

We have defined the Polynomial Fringe Property for logical query programs and shown

that programs with this property are in NC. For programs with elementary chain rules,
the GSM Mapping Theorem gives a sufficient condition that they have the Polynomial
Fringe Property, in terms of GSM mappings of Dl$, the Dyck language on one kind of
parentheses, with an end-marker appended.

Our applications of the GSM Mapping Theorem (see P4 , P 5 , P 7 ) were rather ad hoc:
We first characterized the language, then found a GSM to generate it, and a deterministic
one at that. Is there some interesting class of grammars for which we can go directly to

GSM's? Can we use non-determinism?
*" In Section 9, we conjectured that two cut off recursive subgoals in an elementary single

rule program ensures P-completeness. Is this conjecture true?
Bottom-up evaluation of the entire minimum model of a logical query program is not

usually considered practical. The application of the techniques in this paper to a mixed
bottom-up and top-down strategy that allows a high degree of parallelism, yet only works
on "somewhat relevant" portions of the minimum model, represents a significant open

," problem.
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